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Abstract Motion analysis and control of a pendulum-
driven spherical robot (PDSR) on an inclined plane
with a variable slope is investigated. Firstly, the math-
ematical model of a PDSR on a variable-slope inclined
plane is deduced applying a Lagrangian formulation.
Afterwards, in the presence of an unknown external
disturbance, the terminal slidingmode control (TSMC)
technique is employed to stabilize the robot on the
inclined plane, while the plane is still moving. In other
words, the terminal sliding mode disturbance observer
is used to estimate the unknown disturbance. Based on
the disturbance estimation, the TSMC scheme is estab-
lished to control the single-input and single-output non-
linear system with control singularity and an unknown
nonsymmetric control input saturation. In fact, a com-
pound disturbance is defined and estimated, which
includes the external disturbance, the control singular-
ity and the unknown input saturation. Simulations are
then conducted to validate the proposed approach for
motion control of a PDSR on a variable-slope inclined
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plane with an unknown external disturbance and non-
symmetric input limits.
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List of symbols

φ Rotation of the spherical shell
w.r.t. the (inclined) plane

β Rotation of the main shaft w.r.t.
the spherical shell

θ Instantaneous angle of the pen-
dulum w.r.t. the perpendicular to
the (inclined) plane

α Angle of the inclined plane
mp Mass of the pendulum
ms Mass of the spherical shell
M Mass of the whole robot
IA Spherical shell moment of inertia

about point A (centre)
IC Spherical shell moment of inertia

about point C (contact point)
ρ Radius of the spherical shell
r Radius of the pendulum
rG Radius of the robot mass centre
q Vector of generalized coordina-

tes, i.e., q = [φ θ ]T
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Q Vector of generalized forces, i.e.,
Q = [

Qφ Qθ

]T

T Total kinetic energyof the system
V Total potential energy of the sys-

tem
L Lagrangian, i.e., L = T − V
Tp Kinetic energy of the pendulum
Ts Kinetic energy of the spherical

shell
ωs Angular velocity of the spherical

shell
VA Velocity of point A (shell centre)
VC Velocity of pointC (contact point)
VA/C Velocity of point A w.r.t. point C
Vp Velocity of the pendulum
Vp/A Velocity of the pendulum w.r.t.

point A
x Positionof the robot on the inclined

plane
x0 Initial position of the robot on the

inclined plane
g Earth gravitational acceleration
(i, j, k) Unit vectors in x , y and z direc-

tions
W Work done by external

forces/moments
τm Torque of the motor
θe Desired angle for θ in the equi-

librium state of the robot
x Vector of state variables, i.e., x =

[x1x2 . . . xn]T

u Control input
umin, umax Lower and upper limits of the

control input
y Output of the system
yd Desired output
d Unknown external disturbance
D Compound disturbance
D̂ Estimated compounddisturbance
τ, k, γ, ε, p0, q0,
pi , qi , αi , βi , δ, μ

Controller and estimator design
parameters

sign (∗) Sign function

1 Introduction

A pendulum-driven spherical robot (PDSR) moves by
changing the position of its mass centre. Because of the
spherical shape, these robots can be used in unfriendly

or harsh environments, such as outer planets, deserts
and earthquake ruins, for doing exploration or recon-
naissance tasks [1–5]. Spherical robots are nonholo-
nomic and nonlinear systems. Thus, the modelling and
control of these robots are very challenging. Although
extensive research has been conducted in this area,
there are shortcomings in most of the existing studies;
lack of knowledge warrants further work [6,7].

Li and Canny [8] established a three-step technique
formotion planning of a sphere on a flat surface, includ-
ing both position and orientation convergence. Mojabi
[9] derived the dynamics model of a spherical robot,
considering a chained system, and also, studied its algo-
rithmic motion planning. Bhattacharya and Agrawal
[10,11] built the first-order mathematical model of
a kind of spherical robot applying the nonslip con-
straint and conservation of the angularmomentum. The
authors reported simulations and experimental results.
Halme et al. [12,13] deduced the model of a spheri-
cal mobile robot and then dealt with the rolling ahead
motion. However, the steering motion was not consid-
ered. Bicchi et al. [14,15] developed a quasi-static kine-
maticmodel and a planarLagrangian dynamicmodel of
a spherical robot. Nonetheless, research demonstrated
that thosemodelswere only valid under limited circum-
stances. Joshi et al. [16,17] established the kinematics
model of a spherical robot using Euler parameters and
also proved its controllability. Using a Lagrangian for-
mulation, Liu et al. [18] derived a simplified dynam-
ics model of a spherical robot by input-state lineariza-
tion. Based on the quasi-velocity, Qiang et al. [19]
built the dynamics model of BHQ-1 spherical robot
applying the Lagrange–d’Alembert formula, and then,
based on a back-stepping method, the dynamic trajec-
tory tracking problem of BHQ-2 was investigated [20].
Using the theory of nonholonomic systems, Hanxu et
al. [21] considered the kinematics and dynamics prob-
lems of an omnidirectional spherical robot. Moreover,
the authors found the relationship between the maxi-
mum angle velocity and the pose of the robot. Cameron
and Book [22] studied the kinematics and dynamics
model of nonholonomic systems and established a sim-
plifiedBoltzmann–Hamel equation for both holonomic
and nonholonomic systems. The dynamics equations of
a spherical mobile robot, called BYQ-III, on an irreg-
ular surface were deduced using the Lagrange scheme
[23]. Dynamic modelling, stabilization and control of a
spherical robot moving on an inclined plane were also
considered [24–26]. Azizi and Naderi [27] proposed
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a new inner mechanism with three independent actua-
tors for a spherical robot and investigated its modelling
and trajectory planning. Optimal motion planning and
control of a spherical robot in different environments
with/without obstacles employing Bellman’s dynamic
programming (DP) methodology were recently devel-
oped [28–30]. Further, based on reinforcement learn-
ing (RL) algorithm and eXtended Classifier Systems
(XCS), a model-free methodology was proposed for
motion planning of a spherical robot [31,32]. Using
fuzzy logic systems, adaptive estimation and nonlinear
control of a PDSR were also studied [33,34].

In general, there has been intensive study on design,
dynamic modelling and control of robots. A robust
adaptive neural tracking control approach was devel-
oped for a class of switched affine nonlinear systems
using sliding mode and H∞ methods [35]. Applying
the average dwell-time technique, in the presence of
model uncertainties and external disturbances, an adap-
tive integral slidingmode controller was established for
switched nonlinear systems [36]. Further, the design,
modelling and sliding mode control of multiple coop-
erative welding robot manipulators (MWRMs), which
combine WRMs with the multiple robot manipula-
tors, were studied [37]. Using multi-model switching,
a robust adaptive control scheme was built for discrete
SISO systems with unmodelled dynamics, to improve
the robustness and transient response of the system
[38]. Based on radial basis function neural network
(RBFNN) approximation and Lyapunov stability the-
ory, the robust and adaptive switching control prob-
lems of a robotic manipulator with uncertainties and
disturbanceswere also addressed [39–41]. Considering
the repetitive task and high precision requirement, the
dynamics and trajectory tracking control of cooperative
cable parallel manipulators for multiple mobile cranes
(CPMMC) were investigated employing a robust iter-
ative learning controller [42].

According to the above review, mathematical mod-
elling andmotion control of a PDSRon a variable-slope
inclined plane have not been solved and are still con-
troversial. This paper deals with the full dynamic mod-
elling of a PDSR on an inclined plane with a variable
slope using theLagrangian formulation, considering all
real conditions, inertias and forces. Due to the nature of
the robot, it is a nonholonomic and nonlinear system.
Therefore, the terminal sliding mode control (TSMC)
algorithm is employed for stabilization control of the
robot on the moving inclined plane, while an unknown

external disturbance is applied and there are unknown
control input limits. The controller design is based on
the estimation of a compound disturbance, consisting
of the unknown external disturbance and nonsymmet-
ric control input saturation. Simulation results demon-
strate that, compared to other methods, the approach is
highly promising.

The outline of the paper is as follows. The mathe-
matical model of a PDSR moving on a variable-slope
inclined plane is derived in the next section. Section 3
is devoted to motion control of the robot on a moving
inclined plane using TSMC. Section 4 provides simu-
lation results.

2 Mathematical model of a PDSR on a
variable-slope inclined plane

Using gravity, a PDSR moves based on the centre of
mass displacement. A schematic diagramof themecha-
nism of the robot, comprising a spherical shell, a main
shaft, a pendulum and two motors, is represented in
Fig. 1a. The main shaft is connected to the shell, while
the pendulum is connected to the centre of the main
shaft, both by means of bearings. One of the motors,
which are attached to themain shaft, is applied to rotate
the shaft relative to the shell. The pendulummoves rel-
ative to the main shaft by the other motor. When the
motors are actuated, the sphere moves using gravita-
tional force since the mass centre of the robot changes.
An actual PDSR is indicated in Fig. 1b.

Fig. 1 Mechanism of a PDSR: a schematic diagram, b a kind
of PDSR, c moving on a straight line
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Fig. 2 PDSR side view: a on a flat surface, b on an inclined
plane

Assume that the robot rolls without slipping on a
flat surface. For tracing a straight line, the main shaft
and the pendulum should be parallel and perpendicular
to the surface, respectively. The configuration of the
internal mechanism of the robot for this type of motion
is shown in Fig. 1c. The secondmotor for the pendulum
is locked and does not move. In other words, the robot
moves without any side motion; the angle between the
shaft and the pendulum always stays constant, i.e., 90◦,
as depicted in Fig. 1c. The side view of the robot is
illustrated in Fig. 2a. In this figure, points A, C, G and
P show, respectively, the centre of the shell, contact
point between the robot and the plane, the robot mass
centre and the position of the pendulum. Clearly,

β = φ + θ. (1)

Now, assuming the spherical robot rolls on a variable-
slope inclined plane with the inclination angle α (t), as
depicted in Fig. 2b, its mathematical model is derived
using the Lagrange method.

The Lagrange equation is given as follows:

d

dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Q, L = T − V . (2)

The total kinetic energy of the system is the sum of
kinetic energies of the shell and the pendulum, i.e.,

T = Ts + Tp (3)

Ts = 1

2
ms‖VA‖2 + 1

2
IA‖ωs‖2 (4)

Tp = 1

2
mp‖V p‖2, (5)

where

VA = VC + V A/C , VC = x α̇j,

V A/C = ρφ̇i, x = x0 + ρφ (6)

ωs = (
α̇ − φ̇

)
k (7)

V p = VA + V p/A,

V p/A = r θ̇ (cos(θ) i + sin (θ)j). (8)

The total potential energy of the system is only associ-
ated with the gravity, namely

V = Mgh = Mg (x sin (α) + ρ cos (α)

− rG cos (α + θ)) (9)

which is positive-definite, since it is measured relative
to the horizontal plane and themass centre of the system
is always above this reference (h > 0), as shown in
Fig. 2b. Note that x sin (α) > 0 and ρ > rG .

To find the generalized forces applied to the system,
the method of virtual work is written as

δW = τmδβ = τmδφ + τmδθ. (10)

Hence,

Qφ = Qθ = τm . (11)

Substituting the above relations into the Lagrange
equation, the model of the system is derived as
(
Ic + mpρ

2
)

φ̈ + mpρrcos (θ) θ̈ − IAα̈

−mpρrsin (θ)
(
θ̇2 + θ̇ α̇

)
− Mρ (x0 + ρφ) α̇2

+ Mgρ sin (α) = τm (12)

mpr
2θ̈ + mpρrcos (θ) φ̈ + mpr (x0 + ρφ) sin (θ) α̈

+mpρrsin (θ) φ̇α̇ + MgrG sin (α + θ) = τm . (13)

To find the equilibrium state of the robot, we
have

rG sin (α + θ) = ρ sin (α) (14)

θe = sin−1
(

ρ

rG
sin (α)

)
− α. (15)
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In other words, when θ = θe, the robot is stable on
the inclined plane and does not move. For a variable-
slope inclined plane, θe is not constant, and hence, θ

should track θe to stabilize the robot.

3 Motion control of a PDSR on a moving inclined
plane applying SMC

This section is divided into two subsections. TheTSMC
method is briefly described in the next subsection. Sub-
sequently, the algorithm is applied for stabilization con-
trol of the robot on the inclined plane.

3.1 The terminal sliding mode control (TSMC)
method

Consider the following SISO nonlinear system:

ẋi = xi+1, i = 1, 2, . . . , n − 1

ẋn = f (x) + g (x) u + d

y = x1, (16)

where f (x) and g (x) denote two known nonlinear
functions. Assume that g (x) = 0 for some states, i.e.,
the control singularity, and the control input has an
unknown nonsymmetric saturation, namely

u =
⎧
⎨

⎩

umax if v > umax

v if umin ≤ v ≤ umax

umin if v < umin.

(17)

It can be proved that the robust tracking control input
is expressed as [43]

v = g (x)
(
g2 (x) + τ

)−1
vr , (18)

where τ > 0 and vr will be defined later. Obviously,

g2 (x)
(
g2 (x) + τ

)−1 = 1 − τ
(
g2 (x) + τ

)−1
. (19)

Substituting v into the system state–space equations,
by using the above relation, we have

ẋn = f (x) + g (x) (v + �u) + d

= f (x) + vr + d + g (x)�u

− τ(g2 (x) + τ)−1vr , (20)

where �u = u − v is unknown, since it is assumed
that the upper and lower limits of the control input are
unknown. By defining the compound disturbance as

D = d + g (x)�u − τ(g2 (x) + τ)−1vr , (21)

the following relation is obtained:

ẋn = f (x) + vr + D. (22)

Now, assume that

s1 = y − yd , (23)

where yd denotes the desired output. The nth time
derivative of s1 is

s(n)
1 = y(n) − y(n)

d = ẋn − y(n)
d . (24)

Considering this relation, the recursive method of the
TSMCof uncertain nonlinear systems is written as [44]

s2 = ṡ1 + α1s1 + β1s
p1
q1
1

s3 = ṡ2 + α2s2 + β2s
p2
q2
2

. . .

sn = ṡn−1 + αn−1sn−1 + βn−1s
pn−1
qn−1
n−1 + s, (25)

where αi > 0 and βi > 0. Also, pi and qi are positive
odd integers with pi < qi . The first time derivative of
si is

ṡi = s̈i−1 + d

dt

(

αi−1si−1 + βi−1s
pi−1
qi−1
i−1

)

. (26)

Hence, the j th time derivative of si is

s( j)
i = s( j+1)

i−1 + d( j)

dt ( j)

(

αi−1si−1 + βi−1s
pi−1
qi−1
i−1

)

. (27)

The first time derivative of sn is given by

ṡn = s(n)
1 +

n−1∑

j=1

α j s
(n− j)
j

+
n−1∑

j=1

β j
d(n− j)

dt (n− j)

(

s

p j
q j
j

)

+ ṡ. (28)
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Thus,

ṡn = ẋn − y(n)
d +

n−1∑

j=1

α j s
(n− j)
j

+
n−1∑

j=1

β j
d(n− j)

dt (n− j)

(

s

p j
q j
j

)

+ ṡ

= f (x) + vr + D − y(n)
d

+
n−1∑

j=1

α j s
(n− j)
j +

n−1∑

j=1

β j
d(n− j)

dt (n− j)

(

s

p j
q j
j

)

+ ṡ.

(29)

To estimate the unknown compound disturbance,
consider

s = z − xn, (30)

where z is obtained from

ż = −ks − γ sign (s) − εs
p0
q0 − | f (x)| sign (s) + vr

(31)

where p0 and q0 are positive odd integerswith p0 < q0.
As well, k, γ and ε are positive and γ ≥ |D|.

It can be proved that the terminal sliding mode dis-
turbance estimate of D is [43]

D̂ = −ks − γ sign (s) − εs
p0
q0

− | f (x)| sign (s) − f (x) . (32)

Applying the output of the disturbance estimator, the
terminal sliding mode tracking control is designed as

vr = − f (x) + y(n)
d −

n−1∑

j=1

α j s
(n− j)
j

−
n−1∑

j=1

β j
d(n− j)

dt (n− j)

(

s

p j
q j
j

)

− D̂ − δsn − μs
pn
qn
n ,

(33)

where δ > 0 and μ > 0.

3.2 Motion control of a spherical robot on an inclined
plane using TSMC

Assuming the angular velocity and the angular accel-
eration of the inclined plane are negligible, the mathe-
matical model of the robot reduces to

(
Ic + mpρ

2
)

φ̈ + mpρr
(
θ̈ cos (θ) − θ̇2 sin (θ)

)

+ Mgρ sin (α) = τm (34)

mpr
(
r θ̈ + ρφ̈ cos (θ)

) + MgrG sin (α + θ) = τm .

(35)

Combining these relations, after eliminating φ̈, we
have
(
Icmpr

2 + m2
pρ

2r2sin2 (θ)
)

θ̈

+m2
pρ

2r2 sin (θ) cos (θ) θ̇2

+Mg
((

Ic + mpρ
2
)
rG sin (α + θ)

−mpρ
2rsin (α) cos (θ)

)

=
(
Ic + mpρ

2 − mpρrcos (θ)
)

τm . (36)

Assuming x1 = θ and x2 = θ̇ , state–space equations
can be expressed as

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = f (x1, x2) + g (x1, x2) u + d

y = x1 = θ, (37)

where

f (x1, x2) = −m2
pρ

2r2 sin (x1) cos (x1) x22
Icmpr2 + m2

pρ
2r2sin2 (x1)

+MgrG
(
Ic + mpρ

2
)
sin (α + x1)

Icmpr2 + m2
pρ

2r2sin2 (x1)

− Mmpgρ2rsin (α) cos (x1)

Icmpr2 + m2
pρ

2r2sin2 (x1)

g (x1, x2) = Ic + mpρ
2 − mpρrcos (x1)

Icmpr2 + m2
pρ

2r2sin2 (x1)
,

with u = τm and d denoting an unknown external dis-
turbance. Assuming u is saturated by unknown limits,
the TSMC algorithm is summarized as follows:

s = z − x2 = z − θ̇

ż = −ks − γ sign (s) − εs
p0
q0

− | f (x1, x2)| sign (s) + vr

s1 = y − yd = x1 − yd = θ − yd

s2 = ṡ1 + α1s1 + β1s
p1
q1
1 + s

D̂ = −ks − γ sign (s) − εs
p0
q0

− | f (x1, x1)| sign(s) − f (x1, x2)
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vr = − f (x1, x2) + ÿd − α1ṡ1 − β1
d

dt

(
s

p1
q1
1

)

−D̂ − δs2 − μs
p2
q2
2

v = g (x1, x2) (g2 (x1, x2) + τ)−1vr .

The next section provides simulation results of
applying the designed controller.

4 Simulation results

This section is devoted to simulation results to demon-
strate the effectiveness of the TSMC approach for
motion control of a PDSR on a variable-slope inclined
plane with an unknown external disturbance and the
unknown nonsymmetric input saturation.

Assume that the time-varying external disturbance

applied to the system is d(t) = 3+ 2
√
2 sin

(√
3t
2 + π

6

)
,

while the lower and upper limits of the control input are
umin = −1Nm and umax = 1.5Nm, and the design
parameters to be k = 1000, γ = 10, ε = 0.8, p0 = 7,
q0 = 9, α1 = 100, β1 = 0.7, p1 = 3, q1 = 5,
p2 = 3, q2 = 5, δ = 100 and μ = 0.6. The results of
applying the TSMC technique for stabilizing the robot
on the inclined plane when the slope is constant, i.e.,
α = π

8 , are represented in Figs. 3, 4 and 5. As men-
tioned previously, the equilibrium state of the robot is
when θ = θe = sin−1 (ρ/rG sin (α (t)))−α (t), which
is the desired output yd , i.e., yd = θe. The comparison
result between the output of the system and the desired
output are shown in Fig. 3, while the tracking error is

0 5 1510
0

0.1

0.2

0.3

0.4

0.5

0.6

y
d
y

Fig. 3 Output for a constant inclination angle (with input satu-
ration)

0 5 1510
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 4 Tracking error a constant inclination angle (with input
saturation)

0 5 1510
-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 5 Control input for a constant inclination angle (with input
saturation)

indicated in Fig. 4. As depicted in Fig. 5, the control
input is bounded between umin and umax.

According to Figs. 3, 4 and 5, the tracking error
converges to zero in a short time (less than one sec-
ond), which demonstrates the performance of the dis-
turbance observer-based TSMC. In fact, the method
is very promising for uncertain SISO nonlinear sys-
tems with a time-varying unknown external distur-
bance,while there are unknown control input saturation
bounds.

Now, assuming the slope of the inclined plane is
changing continuously by α (t) = π

8 + π
12 sin

(
π t
40

)
,

namely yd is not constant, the simulation results are
represented in Figs. 6, 7 and 8. Although there is a
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0 5 1510
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y
d
y

Fig. 6 Output for a variable inclination angle (with input satu-
ration)

0 5 1510
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Fig. 7 Tracking error for a variable inclination angle (with input
saturation)

0 5 1510
-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 8 Control input for a variable inclination angle (with input
saturation)

0 5 1510
0

0.2

0.4

0.6

0.8

1

1.2
y
d
y

Fig. 9 Output for a variable inclination angle (without input
saturation)

0 5 1510
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 10 Tracking error for a variable inclination angle (without
input saturation)

jump in the slope of yd , the tracking error vanishes in
a short time.

If there is no saturation on the control input, the
tracking error will go to zero much sooner, as illus-
trated in Figs. 9 and 10. However, the control input
increases substantially, which is not practical and can-
not be implemented in the real world. In fact, the main
advantage of TSMC is tracking control while there are
control input limits, which is a significant concern in
experimental work. Furthermore, the TSMC demon-
strates the Lyapunov stability of the closed-loop system
in the presence of input saturation.

Another widely used scheme to control nonlin-
ear systems is sliding mode control (SMC) [45,46].
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0 5 1510
0

0.2

0.4

0.6

0.8

1

1.2

y
d
y

Fig. 11 Output for a variable inclination angle using SMC (with
input saturation)

0 5 1510
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 12 Tracking error for a variable inclination angle using
SMC (with input saturation)

The simulation results of applying SMC to control
the motion of a PDSR on a variable-slope inclined
plane, with the same unknown external disturbance
and input saturation limits, are illustrated in Figs. 11,
12 and 13. As observed in these figures, compared
to the results obtained with the TSMC, the track-
ing error of the SMC is higher; namely, it converges
gradually, since the disturbance and the control input
limits, which are inevitable in practical implementa-
tion, are not estimated. As well, the chattering of the
control input of the SMC is much more than that
of TMSC, which makes implementation in the real
world infeasible due to the limitations of the actua-
tors.

0 5 1510
-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 13 Control input for a variable inclination angle using SMC
(with input saturation)

5 Conclusions

Mathematical modelling andmotion control of a PDSR
on an inclined plane with a variable slope was devel-
oped. The dynamics model was derived applying the
Lagrange approach. A compound disturbance, includ-
ing the unknown external disturbance and the unknown
nonsymmetric input saturation, was defined and then
estimated using the terminal sliding mode disturbance
observer. Next, based on the output of the estimator,
the terminal sliding mode control (TSMC) scheme was
employed for stabilization control of the robot on the
moving inclined plane. Simulation results of applying
the TSMC algorithm for tracking control of this uncer-
tain nonlinear systemwere very promising; the tracking
error converged to zero in less than one second, while
there were an unknown external disturbance and non-
symmetric control input limits, which guarantee the
feasibility of implementing the technique in the real
world. Future research may include actual implemen-
tation of the TSMC approach on the prototype PDSR
moving on a variable-slope inclined plane.
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